UIP - Urban Intelligence Platform
Real-time Traffic Management System powered by AI, Computer Vision & Linked Open Data
Quick Start Β· Documentation Β· API Reference Β· Contributing
π₯ Development Teamβ
| Name | Role | Responsibilities |
|---|---|---|
| Nguyα» n NhαΊt Quang | Lead Developer | Architecture, Backend, DevOps, CV Integration |
| Nguyα» n Viα»t HoΓ ng | Full-Stack Developer | Frontend, API, Documentation |
| Nguyα» n ΔΓ¬nh Anh TuαΊ₯n | Backend Developer | Agent System, Data Processing, Testing |
π― What is this project?β
The UIP - Urban Intelligence Platform is a production-ready, multi-agent orchestration platform that:
- π¦ Monitors real-time traffic from 1,000+ camera locations
- π€ Detects accidents using YOLOX computer vision
- π Analyzes patterns with advanced analytics agents
- π Publishes Linked Open Data following NGSI-LD and SOSA/SSN standards
- πΊοΈ Visualizes data on an interactive React + MapLibre GL map
- π± Collects citizen reports via mobile-friendly forms
ποΈ Architecture Overviewβ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Frontend (React) β
β TrafficMap β’ Analytics Dashboard β’ Citizen Reports β
βββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
β REST API + WebSocket
βββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββββββββ
β Python Orchestrator (main.py) β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β 30+ Specialized Agents β β
β β β’ Data Collection β’ Transformation β β
β β β’ Analytics β’ Context Management β β
β β β’ RDF Processing β’ Graph Database β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
β Data Layer
βββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββββββββ
β Neo4j β’ Fuseki β’ Stellio β’ MongoDB β’ TimescaleDB β
β Redis β’ Kafka β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π Quick Startβ
Get started in 3 steps (5 minutes):
Option 1: Docker Compose (Recommended)β
# 1. Clone repository
git clone https://github.com/UIP-Urban-Intelligence-Platform/UIP-Urban_Intelligence_Platform.git
cd UIP-Urban_Intelligence_Platform
# 2. Configure environment
cp .env.example .env
# Edit .env with your API keys
# 3. Start all services
docker-compose up -d
# Wait for services to initialize (2-3 minutes)
docker-compose ps
# Access applications
# Frontend: http://localhost:5173
# Backend API: http://localhost:8001
# Neo4j Browser: http://localhost:7474
# Fuseki: http://localhost:3030
Option 2: Local Developmentβ
# Python backend
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -e .
# Start orchestrator
python main.py
# Frontend (separate terminal)
cd apps/traffic-web-app/frontend
npm install
npm run dev
π¦ Key Featuresβ
π₯ Real-time Camera Monitoringβ
- Fetch images from 1,000+ camera locations
- Process with YOLOX for vehicle detection
- Detect accidents and congestion automatically
π§ Intelligent Agent Systemβ
- 30+ specialized agents working in parallel
- Data collection, transformation, analytics
- RDF/Linked Data publishing
- State management and caching
πΊοΈ Interactive Map Interfaceβ
- MapLibre GL traffic visualization
- Multiple overlay layers (weather, AQI, speed zones)
- Real-time updates via WebSocket
- Advanced filtering and search
π Analytics Dashboardβ
- 7 chart types (line, bar, pie, area, radar)
- Historical data analysis
- Pattern recognition
- Predictive insights
π± Citizen Report Systemβ
- Submit traffic reports with photos
- Verify reports using YOLOX
- Track report status
- Integration with main system
π Semantic Web Standardsβ
- NGSI-LD entities for interoperability
- SOSA/SSN ontology for sensor observations
- RDF triplestores (Apache Jena Fuseki)
- SPARQL query support
π Documentation Structureβ
- Installation - Setup guides
- Architecture - System design
- Backend - Python orchestrator
- Agents - 30+ agent documentation
- Frontend - React application
- API Reference - REST & WebSocket APIs
- Data Models - NGSI-LD, SOSA/SSN
- DevOps - Deployment guides
π οΈ Technology Stackβ
Backendβ
- Python 3.9+ - Main orchestrator
- FastAPI - REST API server
- AsyncIO - Asynchronous processing
- YOLOX - Computer vision
Frontendβ
- React 18.2 - UI framework
- TypeScript 5.2 - Type safety
- MapLibre GL JS - Map visualization
- Zustand - State management
- Recharts - Data visualization
Data Storesβ
- Neo4j 5.12 - Graph database
- Apache Jena Fuseki - RDF triplestore
- MongoDB 7 - NGSI-LD entities
- TimescaleDB - Time-series data
- Redis 7 - Caching
- Kafka - Streaming
π Learning Pathβ
- Beginners: Start with Quick Start and Architecture Overview
- Developers: Read Backend Guide and Agent System
- Frontend Engineers: See Frontend Documentation
- Data Scientists: Explore Data Models and SPARQL Queries
- DevOps: Check Docker Compose and CI/CD
π‘ Next Stepsβ
- π Prerequisites - Check system requirements
- π³ Docker Setup - Deploy with Docker
- π§ Local Setup - Development environment
- π Architecture Deep Dive - Understand the system
π€ Contributingβ
Contributions are welcome! See our contribution guide for details.
π Licenseβ
This project is licensed under MIT License.
All components including computer vision modules are MIT licensed.
Computer Vision Stack:
- YOLOX (Apache-2.0) - Vehicle and pedestrian detection
- DETR (Apache-2.0) - Accident detection via HuggingFace Transformers
For more details, see the LICENSE file in the project root.
Ready to explore? Start with the Prerequisites page! π
Built with β€οΈ by the UIP Team
Copyright (c) 2025 UIP Contributors (Nguyα» n NhαΊt Quang, Nguyα» n Viα»t HoΓ ng, Nguyα» n ΔΓ¬nh Anh TuαΊ₯n)